首页> 外文OA文献 >Recognition of Activities of Daily Living Based on Environmental Analyses Using Audio Fingerprinting Techniques: A Systematic Review
【2h】

Recognition of Activities of Daily Living Based on Environmental Analyses Using Audio Fingerprinting Techniques: A Systematic Review

机译:基于环境分析的音频指纹技术对日常生活活动的识别:系统评价

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An increase in the accuracy of identification of Activities of Daily Living (ADL) is very important for different goals of Enhanced Living Environments and for Ambient Assisted Living (AAL) tasks. This increase may be achieved through identification of the surrounding environment. Although this is usually used to identify the location, ADL recognition can be improved with the identification of the sound in that particular environment. This paper reviews audio fingerprinting techniques that can be used with the acoustic data acquired from mobile devices. A comprehensive literature search was conducted in order to identify relevant English language works aimed at the identification of the environment of ADLs using data acquired with mobile devices, published between 2002 and 2017. In total, 40 studies were analyzed and selected from 115 citations. The results highlight several audio fingerprinting techniques, including Modified discrete cosine transform (MDCT), Mel-frequency cepstrum coefficients (MFCC), Principal Component Analysis (PCA), Fast Fourier Transform (FFT), Gaussian mixture models (GMM), likelihood estimation, logarithmic moduled complex lapped transform (LMCLT), support vector machine (SVM), constant Q transform (CQT), symmetric pairwise boosting (SPB), Philips robust hash (PRH), linear discriminant analysis (LDA) and discrete cosine transform (DCT).
机译:识别日常生活活动(ADL)的准确性对于增强生活环境的不同目标和环境辅助生活(AAL)任务非常重要。这种增加可以通过识别周围环境来实现。尽管这通常用于标识位置,但可以通过在特定环境中标识声音来改进ADL识别。本文介绍了可用于从移动设备获取的声学数据的音频指纹技术。进行了全面的文献检索,目​​的是使用在2002年至2017年之间发布的,通过移动设备获取的数据来识别旨在识别ADL环境的相关英语语言作品。总共对115篇文献进行了分析和选择,共40项研究。结果强调了几种音频指纹技术,包括改进的离散余弦变换(MDCT),梅尔频率倒谱系数(MFCC),主成分分析(PCA),快速傅立叶变换(FFT),高斯混合模型(GMM),似然估计,对数模数复杂重叠变换(LMCLT),支持向量机(SVM),恒定Q变换(CQT),对称成对增强(SPB),飞利浦鲁棒哈希(PRH),线性判别分析(LDA)和离散余弦变换(DCT) 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号